

Swiss Confederation

Federal Department of Finance FDF Federal Finance Administration FFA

Baumol's cost disease, fiscal rules and the quality of government services by

Carsten Colombier*

International DAAD-TGU Conference on Economic Dimensions of Sustainabilty Istanbul, May 12-13, 2022

*Federal Finance Administration, Economic Analysis and Policy Advice, Bern, Switzerland and FiFo Policy Fellow, Institute for Public Economics, University of Cologne, Cologne, Germany

1. Motivation

- Since the 1990s fiscal rules have become ever-more popular, in particular, balanced-budget rules (IMF 2018).
 - EU Stability- and Growth Pact since 1999
 - Swiss debt brake at federal level since 2003
 - German debt brake since 2011 (federal level) and since 2019 (regional level)
 - EU member states: Fiscal Compact (TSCG 2012)
- Balanced-budget rules turn a blind eye to exogenous factors of government budget
 - Well-known: demographic change
 - Almost forgotten: Baumol's cost disease (Ryan 1992, Baumol 1985, Baumol/ Oates, 1979)

1. Motivation

- Somewhat related
 - Dahan & Strawcynski (2013): Fiscal rules and public consumption, public investment & transfers
 - Empirical literature on U.S. states (Joyce and Mullins 1991; Penner and Weisner 2001): Fiscal rules and welfare spending
- We show that the cost disease is inconsistent with a balanced-budget rule
- Baumol's (and Bowen's) cost disease => Governments face a dilemma
 - Breaching the rule or reduction in quantity (or curbing government-wage growth)
 - Adverse growth effects

1. Motivation

- How far is the government sector affected by the cost disease?
 - Decomposition of government expenditure by function
 - Related studies give evidence for the cost disease in healthcare and public education (e.g. Hartwig (2008), Bates & Santerre (2013), Nose (2015), Colombier (2017))
 - Innovative approach by Hartwig (2008) and Colombier (2017): The adjusted Baumol variable
 - Application of outlier-robust estimator
 - Particularly apt for distinct heterogeneity of panel-data sets
- Can we expect a budget crowding-out of cost-disease affected public expenditure under a balanced-budget rule?

2. The concept of a balanced budget rule

Balanced budget rule according to Fiscal Compact

 $g_y \le \sigma + \tau - ib \text{ with } 0 < \sigma \le 0.05$ (1)

 with: σ:= limit on structural budget deficit (as % of GDP)
g_y:= ratio of primary public expenditure to GDP
τ:= ratio of total public revenues to GDP

ib:= interest paid on outstanding government debt

 In the medium term: public-expenditure-to-GDP ratio has to be stabilised under a debt-brake rule => g_v=const.

- Key characteristics of Baumol's model of unbalanced growth (Baumol, 1967)
 - Two sectors
 - High productivity growth (progressive sector A) (r)
 - Low or zero productivity growth (Baumol sector B) (s)
 - Ratio of real output is constant
 - Wages in both sectors increase with productivity growth of the progressive sector
- Baumol's cost disease: increase in unit costs of Baumol sector is equal to difference of productivity growth (r-s) => relative price of the stagnant sector climbs steadily

- Our extended version of Baumol's model of unbalanced growth shows that:
 - The cost disease causes a steady increase of the governmentexpenditure-to-GDP ratio =>
 - Long-run inconsistency with a balanced-budget rule
- If the cost disease touches government services either
 - The balanced budget rule is breached or
 - The quantity (and quality) of the affected government services is continuously reduced *or*
 - None-affected government services are crowded out
- In the long run:
 - Reputional losses of the government
 - Adverse consequences on growth and social cohesion

4. Method and data: first step

$$\Delta g_{j,i}(t) = \alpha_j \underbrace{\frac{1}{l(t)_{B,i}} (\hat{w}_i(t) - \hat{\mu}_i(t))}_{\text{adj. Baumol variable}} + \beta_j \Delta z_i(t) + \delta_i d_i(t) + \sigma_i + \lambda(t) + u_i(t) \quad (4)$$

- Sample: 25 OECD countries from 1990 to 2015
- Two-way fixed effects approach with unobserved country- (σ_i) & time-fixed (λ(t)) effects
- Application of outlier-robust MM estimator
- Δ := first differences in logs
- g_{j,i}(t):= per-capita public expenditure item j of country i at time t (classified by function)
- Adjusted Baumol variable:
 - α_j := 1, i.e. full Baumol effect; α_j := 0; i.e. no Baumol effect
 - Benefit: Avoids using notoriously difficult to calculate price deflators for government activity

4. Method and data: second step

 $\bar{g}_{t,i,s} =$

 $\alpha_{s} \sum_{m=1}^{10} \delta_{m,s} d_{t,i,m} + \sum_{n=1}^{4} \beta_{n,s} z_{t,i,n} + \sigma_{i,s} + \rho_{t,s} + u_{t,i,s}$ (5)

- Based on the estimations of the first step: decomposition of government expenditure affected by the cost disease and others => Test on budget crowding out under fiscal rules
- Dependent variables:
 - The shares of cost-disease affected government expenditure and other government expenditure in total government expenditure $(\bar{g}_{t,i,s})$
 - Ratio of general government expenditure to GDP ($\bar{g}_{t,i,s}$)
- Dummies for a balanced-budget rule (e.g. Fiscal Compact, Swiss debt brake) and the SGP, d_{t,i,m}
- Controls of equation (4) excluding the adj. BV are included
- Same approach as for equation (4) is applied in levels

Ū

5. Empirical results: cost disease

Step I	The impact of the cost disease		
Regressor	Adj. Baumol var.	GDP per capita	Rob. adj. R^2 (as %)
General government exp.	0.06**	0.49***	41
Health	0.12***	0.59***	38
Education	0.09***	0.48***	34
General administration	0.01	0.66***	15
Public order & safety	0.09**	0.19*	23
Environm. protection	0.25***	0.59***	9
Recreation, culture, religion	0.09*	0.30**	25
Social protection	0.02	0.26***	55
Defence	0.06	0.47***	20
Economic affairs	0.21***	1.35***	18
Housing & community amneties	-0.03	0.53*	7

5. Empirical results: budget crowding out

Step II	Budget crowding out of government expenditure			
Dependent var.	General gov. exp.	Cost-disease affected	Other	
	(as % of GDP)	(as a share of general government expenditure)		
Debt-brake rule	-0.02*	-0.01***	0.02***	
Maastricht criteria	-0.02	-0.03***	0.13***	
SGP, initial	-0.02***	0.001	0.01	
SGP, post 2005 reform	-0.03	0.01**	-0.03**	
SGP, post 2011 reform	-0.06***	-0.01***	0.02***	
Real GDP per capita	0.04	-0.01***	0.58***	
Rob. Adj. R^2 (as %)	92	89	89	

6. Conclusion

- Baumol's cost disease is not consistent with a balanced budget rule
- Estimations show that the government sector is substantially affected by the cost disease
 - Apart from general government services and housing and community amenities, government functions are contracted by the cost cost disease
 - Evidence is less strong for defence and social protection
 - IV regression point to an underestimation of the cost disease impact by the original regression
- Budget crowding-out of cost-disease-affected government expenditure by balanced budget rules:
 - Fiscal Compact, the SGP and the Swiss debt brake

6. Conclusion

- Balanced budget rules should take account of Baumol's cost disease
 - Otherwise, government risks having adverse consequences in the long run on
 - Economic growth => lower revenues
 - Quality of government services => lower voter satisfaction
- Viable solutions that should be examined
 - Deflate government expenditure affected by the cost disease by the above average inflation and keep the latter constant to GDP
 - Maintain an income elasticity of taxes slightly above one
 - Progressive income tax
 - Consider a wealth tax (if non-existent)

1. Stylized facts of the cost disease

Baumol's cost disease stylized facts – ratios of community, social and personal services to manufacturing and government-expenditure-to-GDP ratio 1995–2015 (cross-country means)

2. Public-expenditure-to-GDP ratio

Ratio of general-government-expenditure-to-GDP by country from 1990 to 2015 (as % of GDP)

Federal Department of Finance FDF

Federal Finance Administration FFA

Hypothesis: government transforms a part of privately produced goods into publicly provided goods

 $g_y = \mu e_A + \lambda e_B$ with $\lambda \gg \mu$; $0 < \lambda \le 1$; $0 \le \mu < 1$ (2)

 μ := government share of the progressive sector A

 λ : =government share of the Baumol sector B

 $e_{A/B}$:= respective shares of the valued-added of sectors A and B resp. in nominal GDP

• Growth rate of public-expenditure-to-GDP ratio

$$\hat{g}_{y} = \frac{(\lambda - \mu)\phi^{2}}{(\mu + \lambda e^{\phi t})(1 + e^{\phi t})} \ge 0$$

if $\phi \ge 0 \quad \forall \hat{g}_{y} < 0 \text{ if } \phi < 0; \ \phi \coloneqq \left(\frac{\hat{L}_{B}}{\hat{L}_{A}}\right)$ (3)

Baumol case: φ=r-s

Federal Department of Finance FDF

- Government options to stick to a balanced-budget-rule; $\hat{g}_y = 0 \land g_y = \overline{g}_y$
 - I: φ=0 => The quantity of the public Baumol sector continuously shrinks. Budget crowding-out of the public Baumol sector.
 - II: Government reduces public Baumol sector ($d\lambda/dt<0$) so that $\lambda=\mu$.
 - However: unrealistic scenario and politically unfeasible.
 - III: Wage restraint in the public Baumol sector:
 - Wage growth =s <=> $\hat{g}_y \le 0$ if $\phi \le r-s$
 - In the longer run:
 - Adverse impact on public employment and the quality of public services
 - φ<r-s => Public Baumol sector steadily decreases

4. Method and data

O

"...heterogeneity is a key feature of national experience." Durlauf (2000)

19

5. Results – decomposition of general government expenditure

Decomposition of public expenditure across 24 OECD countries, 1990-2010

