Equality of Opportunities and Sustainable Development

Guido Neidhöfer

Senior Researcher ZEW - Leibniz Centre for European Economic Research, Mannheim (Germany)

presentation based on joint work with Leonardo Gasparini, Matias Ciaschi, Joaquin Serrano, Sarah

McNamara, Melanie Arntz, Cäcilia Lipowski, Ulrich Zierahn

International DAAD-TGU Conference on Economic Dimensions of Sustainability, Istanbul, May 2022

ZEW

Inequality

if inequality is due to effort...

- most people would be more likely to accept it
- if inequality is due to missing **opportunities**...
 - most people would define it as unacceptable

Inequality

of living standards and opportunities

Why do we care about equality of opportunities?

Why do we care about equality of opportunities?

EQUITY ...
 EFFICIENCY ...

Inequality of opportunity ...is not fair

"Since birth is not an act on the part of the one who is born, it cannot create any inequality (...)" (Kant, 1793)

"All human beings are born free and equal in dignity and rights." (Article 1. Universal Declaration of Human Rights, 1948)

Inequality of opportunity ...is not fair

"Since birth is not an act on the part of the one who is born, it cannot create any inequality (...)" (Kant, 1793)

"All human beings are born free and equal in dignity and rights." (Article 1. Universal Declaration of Human Rights, 1948)

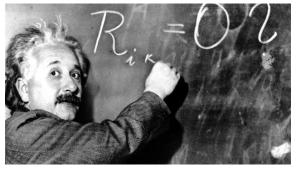
... is it also inefficient ?

or are we facing a TRADE-OFF ?
 how much efficiency do we have to give up to obtain more equity?

Equity ... Efficiency Trade-Off ?

Economic theory suggests that...

Inequality of opportunity ...is detrimental for economic performance


 inefficient human capital accumulation (Barro, 1991; Hanushek/Woessmann, 2008) and allocation (Galor/Tsiddon, 1997; Hassler/Mora, 2000) → misallocation of talent

Equity ... Efficiency Trade-Off ?

Economic theory suggests that...

Inequality of opportunity ...is detrimental for economic performance

 inefficient human capital accumulation (Barro, 1991; Hanushek/Woessmann, 2008) and allocation (Galor/Tsiddon, 1997; Hassler/Mora, 2000) → misallocation of talent

How many Einsteins are we loosing due to unequal opportunities?

Social Mobility and Economic Performance

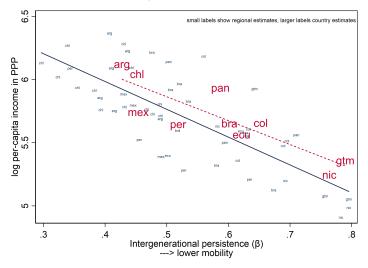
We tested this hypothesis:

Social mobility as indicator of equality of opportunities

- "Social mobility and economic development" G.Neidhöfer, L.Gasparini, M.Ciaschi, J.Serrano (working paper available)
 - geography of social mobility in Latin America
 - test if higher mobility \Rightarrow economic development
- Intergenerational mobility and economic performance of European regions"

S.McNamara, G.Neidhöfer (work in progress)

- geography of social mobility in Europe
- test if higher mobility \Rightarrow more innovation


Contribution

- Build novel dataset of (subnational) region-year observations for 10 Latin American countries / 31 European countries
 - intergenerational education mobility of cohorts (1940-89)
 - development indicators (1981-2018)
- 2 Geography of social mobility for Latin America / Europe

- Solution Novel way to link cohort- and year-level measures (measure mobility when it actually matters)
- **4** Test social mobility \Rightarrow economic performance

Social Mobility and Economic Development

average over period 1981-2018

Main Results

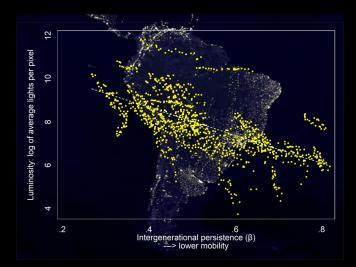
	(1)	(2)	(3)	(4)	(5)
M (w)	-1.506***	-2.012***	-2.032***	-1.967***	-2.645***
	(0.243)	(0.268)	(0.216)	(0.228)	(0.303)
M (w) $ imes$ Inequality (Gini)					-1.409** (0.192)
Controls					
Inequality (Gini)	0.356**	0.456***	0.498***	0.512***	-0.453**
	(0.158)	(0.156)	(0.167)	(0.155)	(0.165)
Migrant share (w)		0.633***	0.680***	0.964***	0.0528
		(0.160)	(0.159)	(0.172)	(0.148)
Average years of education (w)		0.528*	0.704**	-0.744**	1.005***
		(0.295)	(0.274)	(0.288)	(0.299)
Region and Time F.E.	х	Х	х	х	х
Year level:					
- Population, Urban share	Х	Х	Х	Х	Х
Initial conditions: - GDP p.c., Population,					
Temperature, Precipitation			х	Х	х
Spillover effects				х	Х
Observations	1368	1368	1368	1368	1368
Adjusted R^2	0.924	0.928	0.934	0.939	0.981

Dep.variable: log per-capita income | $M = log(\beta)$ (intergenerational persistence)

Main Results

	0 ()	, (,	0	•
(1)	(2)	(3)	(4)	(5)
-1.506***	-2.012***	-2.032***	-1.967***	-2.645**
(0.243)	(0.268)	(0.216)	(0.228)	(0.303)
				-1.409** (0.192)
0.356**	0.456***	0.498***	0.512***	-0.453**
(0.158)	(0.156)	(0.167)	(0.155)	(0.165)
	0.633***	0.680***	0.964***	0.0528
	(0.160)	(0.159)	(0.172)	(0.148)
	0.528*	0.704**	-0.744**	1.005***
	(0.295)	(0.274)	(0.288)	(0.299)
х	х	х	х	х
Х	Х	Х	Х	Х
		Х	Х	х
			х	Х
1368	1368	1368	1368	1368
0.924	0.928	0.934	0.939	0.981
	-1.506*** (0.243) 0.356** (0.158) X X X 1368	1.506*** 2.012*** (0.243) (0.268) 0.356** 0.456*** (0.158) (0.156) 0.633*** (0.160) 0.528* (0.295) X X X X 1368 1368	1.506*** 2.012*** 2.032*** (0.243) (0.268) (0.216) 0.356** 0.456*** 0.498*** (0.158) (0.156) (0.167) 0.633*** 0.680*** (0.160) (0.159) 0.528* 0.704** (0.295) (0.274) X X X X X X X X X X X X X X X X X X	1.506*** 2.012*** 2.032*** 1.967*** (0.243) (0.268) (0.216) (0.228) 0.356** 0.456*** 0.498*** 0.512*** (0.158) (0.156) (0.167) (0.155) 0.633*** 0.680*** 0.964*** (0.160) (0.159) (0.172) 0.528* 0.704** -0.744** (0.295) (0.274) (0.288) X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X<

Dep.variable: log per-capita income | $M = log(\beta)$ (intergenerational persistence)


Main Results

iable. log per-capita ilic		$-\iota og(\mu$) (interg	generatic	mai persi
	(1)	(2)	(3)	(4)	(5)
M (w)	-1.506***	-2.012***	-2.032***	-1.967***	-2.645***
	(0.243)	(0.268)	(0.216)	(0.228)	(0.303)
M (w) \times Gini index					-1.409***
					(0.192)
Controls					
Inequality (Gini)	0.356**	0.456***	0.498***	0.512***	-0.453***
	(0.158)	(0.156)	(0.167)	(0.155)	(0.165)
Migrant share (w)		0.633***	0.680***	0.964***	0.0528
		(0.160)	(0.159)	(0.172)	(0.148)
Average years of education (w)		0.528*	0.704**	-0.744**	1.005***
		(0.295)	(0.274)	(0.288)	(0.299)
Region and Time F.E.	Х	Х	х	х	Х
Year level:					
- Population, Urban share	Х	х	Х	Х	Х
Initial conditions:					
- GDP p.c., Population,					
Temperature, Precipitation			Х	Х	Х
Spillover effects				х	Х
Observations	1368	1368	1368	1368	1368
Adjusted R^2	0.924	0.928	0.934	0.939	0.981

Dep.variable: log per-capita income | $M = log(\beta)$ (intergenerational persistence)

Social mobility and...

other measures of development

Social mobility and...

other measures of development

Dep.variable: in column title | $M = log(\beta)$ higher persistence \longrightarrow

	Luminosity	Poverty	Employment	Formality	Water	Electricity
M (w)	-0.817*** (0.132)	2.518** (0.997)	-0.795*** (0.105)	-0.525** (0.206)	-0.786*** (0.172)	-0.192 (0.156)
Region and Country-Time F.E.	Х	Х	Х	Х	Х	Х
Year level controls	Х	х	Х	Х	Х	Х
Cohort level controls	Х	Х	Х	Х	Х	Х
Initial conditions	Х	Х	Х	Х	Х	Х
Spillover effects	Х	х	Х	Х	Х	х
Observations	999	1368	1368	1223	1278	1128

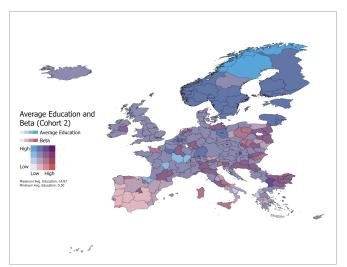
Outcomes: Luminosity log average lights per pixel, Poverty line 2USD, Employment, Formality, Literate people able to write and read, (households with access to) Water/Electricity, houses made of Precarious materials, Child Mortality (<1 year old)

Social Mobility in Latin America

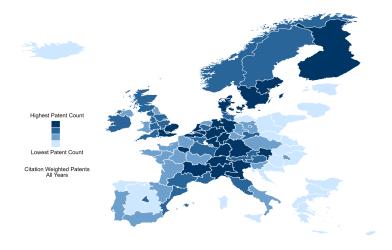
- Social mobility has been a driver of economic development in Latin America
- Inequality is particularly detrimental if paired with low levels of social mobility

Social Mobility in Europe

Social mobility in Europe

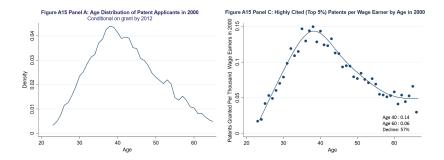

Primary Data

- 1 European Social Survey
 - estimate intergenerational mobility of education
- 2 European Patent Office
 - Patents, citation weighted patents in each region
- 3 Eurostat
 - Control variables (e.g. regional GDP, unemployment etc)
- \Rightarrow Panel data set including 101 NUTS1 (198 NUTS2) regions

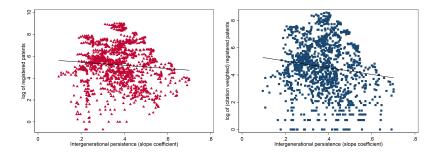

Social mobility in Europe

Average education vs. intergenerational persistence

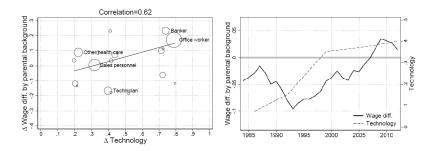
(Cohort 1: 1940-59. Cohort 2: 1960-79.)


Social mobility and innovation

1.1.1


Social mobility and innovation

Cohort-innovation profiles (using Bell et al., 2016, among others)


Social mobility and innovation

Preliminary results

 regions with lower equality of opportunity have lower innovation potential Technological change and equality of opportunities

Technological progress further improves equality of opportunities

Arntz/Lipowski/Neidhöfer/Zierahn (2022). "Computers as Stepping Stones? Technological Change and Equality of Labor Market Opportunities."

Conclusions

• Social mobility is a driver of economic performance

Policy implication

- there is no equity-efficiency trade-off, rather the opposite
- intervention that increases opportunities, but causes inefficiencies in the short-run, may still be efficient in the long-run

 \Longrightarrow Striving for equality of opportunities is a sustainable goal

Thank you for your attention! Your comments are very welcome!

APPENDIX

Intergenerational mobility measures

Transition probabilities

The probability of upward mobility

$$UM = Prob(y^c \ge s | y^p < s) \tag{1}$$

Data

and the probability of top persistence

$$TP = Prob(y^c \ge s | y^p \ge s)$$
⁽²⁾

Relative risk

$$RR = ln(\frac{TP}{UM}) \tag{3}$$

Slope coefficient and intergenerational correlations

$$y^{c} = \alpha + \beta \cdot y^{p} + \gamma X + \epsilon \tag{4}$$

$$\rho = \beta \frac{\sigma^p}{\sigma^c} \tag{5}$$

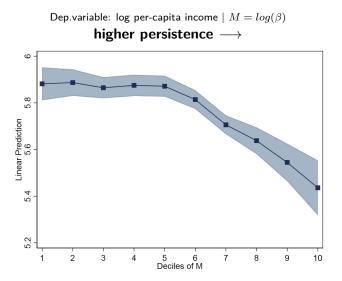
Absolute Mobility

Dep.variable: log	g per-o	capita	incom	$e \mid M$	= UM		
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
M (w)	1.137***	0.788***	0.916***	1.215***	1.506***	3.335***	1.706***
	(0.0330)	(0.220)	(0.218)	(0.145)	(0.150)	(0.514)	(0.207)
$M(w) \times M(w)$						0.839***	
						(0.204)	
M (w) \times Inequality (Gini)							0.433
Urban Population			-0.0790	-0.271**	-0.184	0.0108	(0.301) -0.228*
orbail Population			(0.117)	(0.125)	(0.117)	(0.126)	(0.119)
Population			1.587***	1.416**	0.998*	1.651**	0.953*
ropulation			(0.592)	(0.606)	(0.599)	(0.666)	(0.577)
Population × Population			-0.0547***	-0.0495**	-0.0361*	-0.0600**	-0.0340*
			(0.0208)	(0.0209)	(0.0208)	(0.0233)	(0.0200)
Inequality (Gini)			0.520***	0.594***	0.698***	0.682***	1.156***
			(0.175)	(0.160)	(0.166)	(0.166)	(0.369)
Migrant share (w)			. ,	0.264	0.750***	0.598***	0.769***
				(0.173)	(0.152)	(0.144)	(0.146)
Variance of education (w)				0.0159	-0.210	0.809***	-0.321
				(0.228)	(0.239)	(0.269)	(0.249)
Average years of education (w)				0.764*	0.530	0.717**	0.649*
				(0.388)	(0.351)	(0.353)	(0.365)
GDPpc (w)					0.217***	0.185***	0.205***
					(0.0657)	(0.0590)	(0.0641)
Population 1940-89 (w)					-1.146***	-1.131***	-1.050***
					(0.402)	(0.409)	(0.396)
Population 1940-89 (w) \times Population 1940-89 (w)					0.0410***	0.0444***	0.0368***
T 1040.00 ()					(0.0126) 1.069***	(0.0133) 0.724**	(0.0124) 1.105***
Temperature 1940-89 (w)					(0.339)	(0.345)	
Temperature 1940-89 (w) × Temperature 1940-89 (w)					-0.0394***	-0.0313***	(0.337) -0.0401***
remperature 1940-69 (w) × remperature 1940-69 (w)					(0.00938)	(0.00920)	(0.00925)
Precipitation 1940-89 (w)					-0.153**	-0.128**	-0.149**
recipitation 1940-05 (w)					(0.0615)	(0.0539)	(0.0615)
Precipitation 1940-89 (w) × Precipitation 1940-89 (w)					0.00390*	0.00307	0.00403*
					(0.00219)	(0.00197)	(0.00219)
Constant	6.551***	6.231***	-4.655	-4.426	0.992	-3.184	0.590
	(0.0590)	(0.276)	(4.236)	(4.825)	(5.347)	(5.732)	(5.314)
Country	Yes	No	No	No	No	No	No

Dep.variable: log per-capita income | M = UM

Relative Mobility

Dep.variable. 10		(2)	(3)	(4)	(5)	(6)	(7)
M	(1)	-1.072***	-1.110***		-1.079***	-2.785***	
M (w)	-1.050***	(0.171)	(0.176)	-1.193*** (0.120)	(0.104)	-2.785***	-1.293*** (0.200)
M (w) \times M (w)	(0.0305)	(0.171)	(0.170)	(0.120)	(0.104)	(0.504) 0.705*** (0.208)	(0.200)
$M(w) \times Inequality (Gini)$						(,	-0.419
							(0.314)
Urban Population			-0.0105	-0.203	-0.142	-0.00557	-0.190
			(0.121)	(0.131)	(0.126)	(0.127)	(0.124)
Population			0.463	0.802	0.677	1.034	0.666
			(0.608)	(0.611)	(0.627)	(0.691)	(0.608)
Population × Population			-0.0192 (0.0213)	-0.0306 (0.0214)	-0.0263 (0.0219)	-0.0402* (0.0243)	-0.0254
Inequality (Gini)			0.539***	0.586***	0.679***	0.703***	(0.0212) 1.062***
mequancy (Gin)			(0.176)	(0.161)	(0.169)	(0.171)	(0.332)
Migrant share (w)			(0.170)	0.296*	0.582***	0.382***	0.612***
ingrane share (iii)				(0.161)	(0.144)	(0.140)	(0.139)
Variance of education (w)				-0.275	-0.556**	0.0475	-0.627**
				(0.227)	(0.257)	(0.244)	(0.261)
Average years of education (w)				0.968***	1.270***	1.064***	1.322***
				(0.356)	(0.374)	(0.351)	(0.376)
GDPpc (w)					0.200***	0.221***	0.189***
					(0.0614)	(0.0601)	(0.0596)
Population 1940-89 (w)					-0.499	-0.419	-0.430
					(0.393)	(0.391)	(0.389)
Population 1940-89 (w) \times Population 1940-89 (w)					0.0136	0.0126	0.0108
					(0.0120)	(0.0121)	(0.0119)
Temperature 1940-89 (w)					0.812**	0.569	0.875**
T					(0.357) -0.0326***	(0.363) -0.0258***	(0.359) -0.0341***
Temperature 1940-89 (w) \times Temperature 1940-89 (w)					(0.00994)	(0.00991)	(0.00983)
Precipitation 1940-89 (w)					-0.279***	-0.302***	-0.265***
Precipitation 1940-89 (w)					(0.0674)	(0.0664)	(0.0674)
Precipitation 1940-89 (w) × Precipitation 1940-89 (w)					0.00650***	0.00678***	0.00636***
					(0.00239)	(0.00232)	(0.00236)
Constant	6.216***	6.392***	4.303	0.663	2.086	0.669	1.244
	(0.0513)	(0.181)	(4.411)	(4.597)	(5.622)	(5.936)	(5.709)
Country	Yes	No	`No ´	No	No	No	No
Region	No	Vec	Vec	Vec	Vac	Vee	Vec


Dep.variable: log per-capita income | M = RR

Correlation coefficient

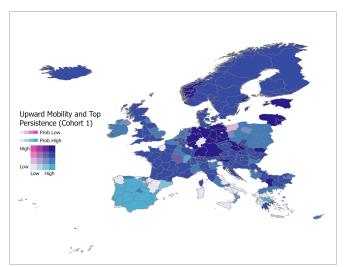
Dep.variable: log	; per-c	apita	incom	$e \mid M$	= RR		
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
M (w)	-0.173*	-0.260	-0.348	-0.724***	-0.538**	0.167	-1.018**
$M \text{ (w)} \times M \text{ (w)}$	(0.0881)	(0.229)	(0.238)	(0.204)	(0.208)	(1.268) 0.437 (0.779)	(0.468)
M (w) \times Inequality (Gini)						()	-0.649
Urban Population			0.00494	-0.163	-0.164	-0.158	(0.557) -0.183
Population			(0.119) 0.291	(0.131) 0.764	(0.128) 0.738	(0.126) 0.781	(0.123) 0.769
Population \times Population			(0.702) -0.0108 (0.0243)	(0.708) -0.0277 (0.0242)	(0.756) -0.0276 (0.0258)	(0.757) -0.0291 (0.0258)	(0.749) -0.0285 (0.0256)
Inequality (Gini)			(0.0243) 0.529*** (0.179)	(0.0242) 0.640*** (0.159)	(0.0258) 0.688*** (0.168)	(0.0258) 0.692*** (0.170)	(0.0250) 0.210 (0.457)
Migrant share (w)			(0.179)	(0.139) 0.447** (0.176)	(0.108) 0.669*** (0.145)	(0.170) 0.678*** (0.152)	(0.457) 0.650*** (0.147)
Variance of education (w)				-0.665***	-1.060***	-1.077***	-1.067***
Average years of education (w)				(0.248) 2.262***	(0.295) 2.454*** (0.420)	(0.296) 2.447***	(0.295) 2.490*** (0.410)
GDPpc (w)				(0.401)	(0.420) 0.294*** (0.0793)	(0.417) 0.297*** (0.0795)	(0.419) 0.293*** (0.0786)
Population 1940-89 (w)					-0.0294 (0.406)	-0.0566 (0.419)	0.0870
Population 1940-89 (w) \times Population 1940-89 (w)					-0.00498 (0.0139)	-0.00395 (0.0144)	-0.00913 (0.0145)
Temperature 1940-89 (w)					0.305	0.299	0.356
Temperature 1940-89 (w) \times Temperature 1940-89 (w)					(0.358) -0.0188*	(0.357) -0.0188*	(0.361) -0.0198*
Precipitation 1940-89 (w)					(0.0101) -0.319***	(0.0101) -0.331***	(0.0101) -0.300*** (0.0762)
Precipitation 1940-89 (w) \times Precipitation 1940-89 (w)					(0.0743) 0.00511** (0.00226)	(0.0807) 0.00537** (0.00240)	(0.0762) 0.00477** (0.00230)
Constant	4.914*** (0.0800)	5.080*** (0.181)	3.504 (5.082)	-2.836 (5.344)	(0.00226) 0.322 (6.610)	(0.00240) 0.674 (6.683)	(0.00230) -1.871 (7.143)

 $\mathbf{D}_{\mathbf{n}}$

Non-linearities

Social Mobility and Economic Development

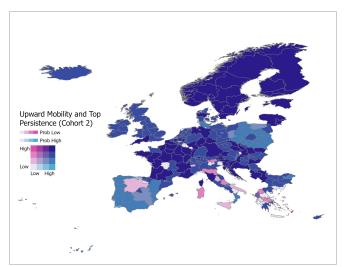
Human Capital Accumulation or Allocation ?


Accumulation or Allocation

	(1)	(2)	(3)	(4)			
Upward Mobility (w)	1.716***			1.514***			
	(0.211)			(0.150)			
Top Persistence (w)		1.812***	0.423	-0.0887			
		(0.414)	(0.274)	(0.241)			
Average years of education (w)			2.369***	0.546			
			(0.389)	(0.340)			
Region and Time FE	Yes	Yes	Yes	Yes			
Other Controls	Yes	Yes	Yes	Yes			
Observations	1363	1363	1363	1363			
$TP = (Probability \ to \ complete \ secondary \ \ High \ educated \ parents)$							
$UM = (Probability \ to \ complete \ secondary \mid Low \ educated \ parents)$							

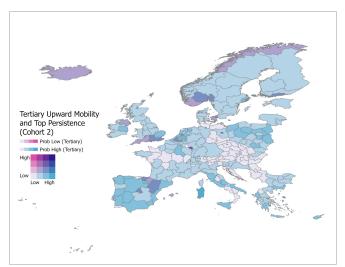
Social mobility in Europe

Upward mobility vs. Top persistence (Secondary Education)

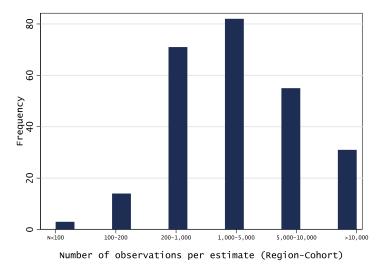

(Cohort 1: 1940-59. Cohort 2: 1960-79.)

Social mobility in Europe

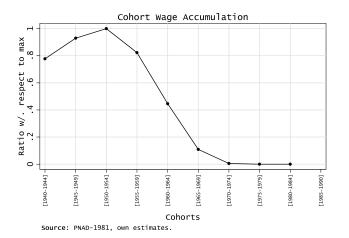
Upward mobility vs. Top persistence (Secondary Education)


(Cohort 1: 1940-59. Cohort 2: 1960-79.)

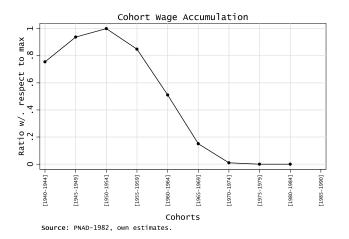
Social mobility in Europe

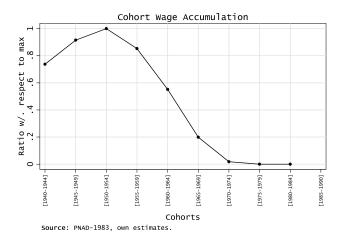

Upward mobility vs. Top persistence (Tertiary Education)

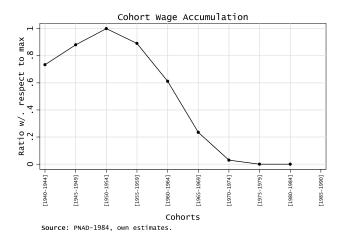
(Cohort 1: 1940-59. Cohort 2: 1960-79.)

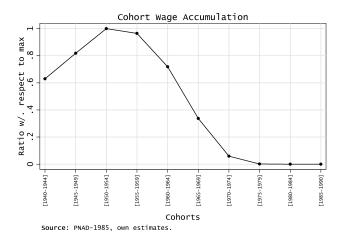


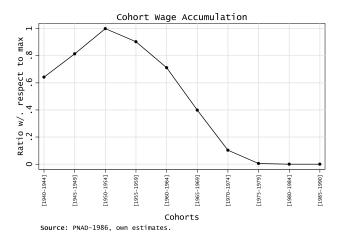
Data

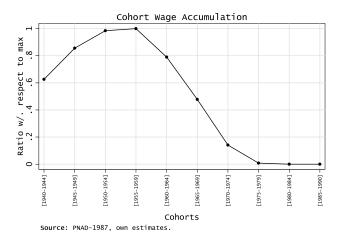

Intergenerational mobility estimates

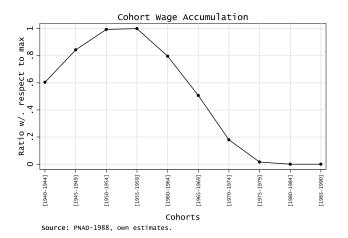


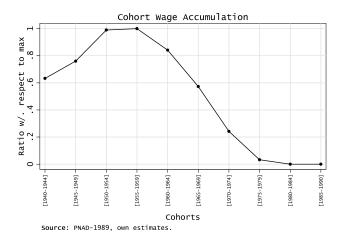


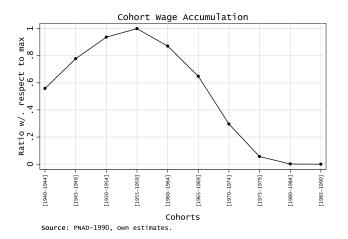


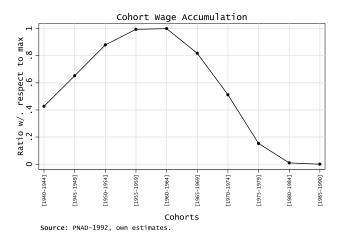


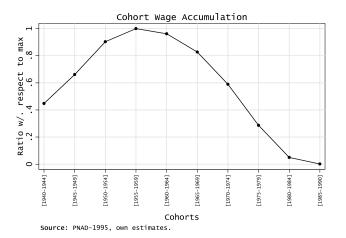


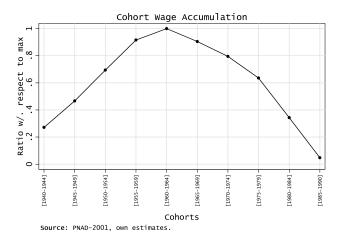


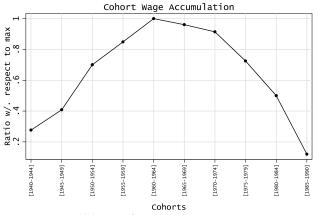


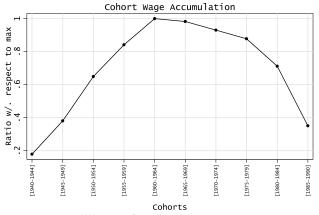


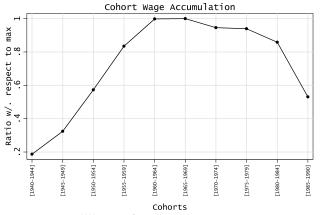


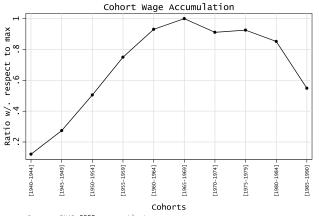


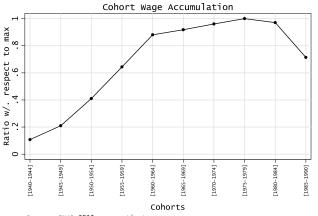


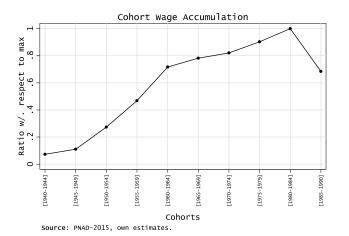





Source: PNAD-2003, own estimates.


Source: PNAD-2006, own estimates.


Source: PNAD-2008, own estimates.


Source: PNAD-2009, own estimates.

Source: PNAD-2012, own estimates.

Weight-Structure

