DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING COURSE INFORMATION

Course Details

Code				Academic Year			Semester
MAT106				1			Spring
Title				T	A	L	ECTS
Linear Algebra				2	2	1	6
Language	German						
Level	Undergraduate	X	Graduate			Postgraduate	
Department / Program	Electrical and Electronics Engineering						
Forms of Teaching and Learning	Face-to-Face, Group Study, Individual Study.						
Course Type	Compulsory		X Elective	Elective			
Objectives	This course covers matrix theory and linear algebra. Emphasis is given to topics that will be useful in other disciplines, including systems of equations, vector spaces, determinants and eigenvalues. After successfully completing this course, you will have a good understanding of the following topics and their applications: systems of linear equations, row reduction and echelon forms, matrix operations, linear dependence and independence, vector spaces and subspaces, orthogonal bases and orthogonal projections, Gram-Schmidt process, linear models and least-squares problems, determinants and their properties, Cramer's Rule, eigenvalues and eigenvectors, diagonalization of a matrix, Markov matrices.						
Content	- Vectors, Matrices - Linear Equations, Gauss-Jordan - Vector Spaces, the four fundamental subspaces, Nullspace, Column Space - Dimension, Basis, Span - Orhogonal vectors and subspaces, projections - Orthogonal matrices and Gram-Schmidt - Determinants, Cramer's rule - Eigenvalues, Eigenvectors, Diagonalization and Powers of A - Differential Equations, $\exp (\mathrm{A})$ - Markov Matrices						
Prerequisites	None						
Coordinator	DI Dr. Canan Yıldız						
Lecturer(s)	DI Dr. Canan Yıldız						
Assistant(s)	MSc. Ali Osman İskenderli MSc. Mustafa Korkut Özarslan						
Work Placement	None						
Recommended or Required Reading							
Books / Lecture Notes	- Strang, Gilbert. Lineare Algebra. Springer-Verlag Berlin Heidelberg GmbH, 2003. - Teschl, Gerald; Teschl, Susanne. Mathematik für Informatiker, Band 1: Diskrete Mathematik und Lineare Algebra. Springer-Verlag Berlin Heidelberg 2006, 2007.						
Other Sources	- Göllmann, Laurenz et.al. Mathematik für Ingenieure: Verstehen, Rechnen, Anwenden. Springer Vieweg, 2017.						

TÜRK-ALMAN ÜNIVERSITESi

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

 COURSE INFORMATION

TÜRK-ALMAN ÜNIVERSITESi

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

 COURSE INFORMATION| Final Exam | 1 | 3 | 3 |
| :---: | :---: | :---: | :---: |
| | | Total Work Load | 168 |
| ECTS Points (Total Work Load / 28) | | | 6 |
| Learning Outcomes | | | |
| 1 | Solving $\mathrm{Ax}=\mathrm{b}$ for square systems by elimination (pivots, multipliers, back substitution, invertibility of A , factorization into $\mathrm{A}=\mathrm{LU}$) | | |
| 2 | Complete solution to $\mathrm{Ax}=\mathrm{b}$ (column space containing b , rank of A , nullspace of A and special solutions to $A x=0$ from row reduced R) | | |
| 3 | Basis and dimension (bases for the four fundamental subspaces) | | |
| 4 | Least squares solutions (closest line by understanding projections) | | |
| 5 | Orthogonalization by Gram-Schmidt (factorization into A = QR) | | |
| 6 | Properties of determinants (leading to the cofactor formula and the sum over all n ! permutations, applications to $\operatorname{inv}(\mathrm{A})$ and volume) | | |
| 7 | Eigenvalues and eigenvectors (diagonalizing A, computing powers $A^{\wedge} k$ and matrix exponentials to solve difference and differential equations) | | |
| 8 | Linear transformations and change of basis (connected to the Singular Value Decomposition - orthonormal bases that diagonalize A) | | |
| 9 | Linear algebra applications (graphs and networks, Markov matrices, linear programming) | | |

Weekly Content

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING COURSE INFORMATION

$\mathbf{1}$	5	5	4			3	1
$\mathbf{2}$	5	5	4			3	1
$\mathbf{3}$	5	5	4			3	1
$\mathbf{4}$	5	5	4			3	1
$\mathbf{5}$	5	5	3		3	1	
$\mathbf{6}$	5	5	3		3	1	
$\mathbf{7}$	5	5	3		3	1	
$\mathbf{8}$	5	5	3		3	1	
$\mathbf{9}$	5	5	3		3	1	
Contribution Level							
https://obs.tau.edu.tr/oibs/bologna/index.aspx?lang=tr\&curOp=showPac\&curUnit=05\&curSunit=5726\#							
Compiled by:							
Date of Compilation:							

